lunes, 1 de diciembre de 2014

Criterio de la Primera Derivada


CRITERIO DE LA PRIMERA DERIVADA, UTILIZADO PARA UNA FUNCIÓN CONTINUA Y SU PRIMERA DERIVADA TAMBIÉN CONTINUA.
obtener la primera derivada.

 igualar la primera derivada a cero y resolver la ecuación.

El valor o valores obtenidos para la variable, son donde pudiera haber máximos o mínimos en la función.
  
se asignan valores próximos (menores y mayores respectivamente) a la variable independiente y se sustituyen en la derivada. Se observan los resultados; cuando estos pasan de positivos a negativos, se trata de un punto máximo; si pasa de negativo a positivo el punto crítico es mínimo.
Cuando existen dos o más resultados para la variable independiente, debe tener la precaución de utilizar valores cercanos a cada uno y a la vez distante de los demás, a fin de evitar errores al interpretar los resultados.


sustituir en la función original (Y) el o los valores de la variable independiente (X) para los cuales hubo cambio de signo. Cada una de las parejas de datos así obtenidas, corresponde a las coordenadas de un punto crítico.


Si se aplica la primera derivada a una función se conoce el comportamiento de ésta, en los puntos donde la derivada es cero (0) habrá un valor extremo, a continuación se muestran algunos ejemplos:

- A partir de la siguiente función encuentre:
a)Los puntos críticos.
b)Valores máximos y mínimos.
c)La gráfica de la función.

f(x)= 4x2 + 5x - 3

a) PUNTOS CRÍTICOS:
- obtener la derivada de la función:
8x + 5
- igualar con cero (0).
f'(x)= 8x + 5 = 0
x = -5/8

b)MÁXIMOS Y MÍNIMOS:
Imagen
- El punto crítico lo podemos obtener igualando con cero (0) la función derivada y despejando "x".
- El valor de antes y después lo podemos obtener con un número menor (antes) que el punto crítico y un número mayor (después) que el punto crítico.
- La primera derivada la podemos obtener sustituyendo el valor de antes y después en la primera derivada.
- El comportamiento lo podemos deducir de la siguiente manera: Si el número de la primera derivada es positivo "sube", si el número es negativo "baja".
- El resultado lo deducimos de la siguiente manera: Si primero "baja y luego sube" su resultado es Mínimo. Si el comportamiento es "Sube y luego baja" el resultado Máximo.

c)GRÁFICA:
La gráfica la podemos obtener sustituyendo en la función original el punto crítico y asi obteniendo los puntos del mínimo absoluto de la gráfica.
Imagen

1 comentario: